skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Christensen, Martin Pekár"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Table search aims to answer a query with a ranked list of tables. Unfortunately, current test corpora have focused mostly on needle- in-the-haystack tasks, where only a few tables are expected to exactly match the query intent. Instead, table search tasks often arise in response to the need for retrieving new datasets or augment- ing existing ones, e.g., for data augmentation within data science or machine learning pipelines. Existing table repositories and bench- marks are limited in their ability to test retrieval methods for table search tasks. Thus, to close this gap, we introduce a novel dataset for query-by-example Semantic Table Search. This novel dataset con- sists of two snapshots of the large-scale Wikipedia tables collection from 2013 and 2019 with two important additions: (1) a page and topic aware ground truth relevance judgment and (2) a large-scale DBpedia entity linking annotation. Moreover, we generate a novel set of entity-centric queries that allows testing existing methods under a novel search scenario: semantic exploratory search. The resulting resource consists of 9,296 novel queries, 610,553 query- table relevance annotations, and 238,038 entity-linked tables from the 2013 snapshot. Similarly, on the 2019 snapshot, the resource consists of 2,560 queries, 958,214 relevance annotations, and 457,714 total tables. This makes our resource the largest annotated table- search corpus to date (97 times more queries and 956 times more annotated tables than any existing benchmark). We perform a user study among domain experts and prove that these annotators agree with the automatically generated relevance annotations. As a re- sult, we can re-evaluate some basic assumptions behind existing table search approaches identifying their shortcomings along with promising novel research directions. 
    more » « less